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Abstract—This paper investigates the effectiveness of artificial 
neural networks (ANNs) as a surrogate modeling method based on 
machine learning algorithms in emulating the electroacoustic 
wave behavior of the high-Q piezoelectric resonators and filters. A 
domain decomposition approach incorporating ANN models to 
concurrently analyze multidomain radio frequency (RF) modules 
is also discussed. Different multilayer perceptron (MLP) ANN 
models have been developed and benchmarked against their 
model accuracy and model efficiency. The developed models are 
then utilized to construct ladder-type Band 7 and Band 41 
bandpass transmit filters, as examples, to highlight the quality of 
the modeling method. Other possible applications pertinent to the 
capability of machine learning algorithms are briefly discussed.

Keywords—Acoustic wave (AW) resonator, artificial neural 
networks (ANNs), bandpass, ladder-type filters, device modeling, 
domain decomposition, machine learning.

I. In t r o d u c t io n

In the recent years, surrogate models based on machine 
learning algorithms have gained a great attention as alternative 
to physics-based models and simulations for their efficient 
model utilization, accuracy, suitability for automatic model 
creation, and versatility since they are not limited to specific 
structures [1-6]. Behavioral or black-box models based on 
artificial neural networks (ANNs) can learn the input-output 
relationship of a given system or a device as well as performing 
pattern recognition using as little training data and user 
interaction as possible. ANN modeling facilitates accurate and 
fast models of realistic technology modification scenarios where 
training data is expensive or sparse. In addition to the 
conventional MLP ANN, several advanced ANN structures 
have been explored in the literature such as recurrent neural 
networks (RNN) where feedback loops allow information to be 
stored within the network to perform complicated tasks [2, 3], 
and reverse-modeling using knowledge-based ANN (KBNN) 
where the input-output variables are reversed in a systematic 
manner to improve the model accuracy. Such complex ANN 
topologies can be utilized when standard MLP ANN fails to 
deliver a satisfactory performance [4]. The study proposed in 
this paper uses conventional ANN structure which are found to 
be of sufficient accuracy to model the acoustic-wave (AW) 
resonator behavior, as w ill be demonstrated in Section III.

Fig. 1. Representation a conventional MLP feedforward neural network 
consisting of 3-layers (a layer of three inputs, a single hidden-layer of N  
neurons, and a layer of two outputs).

Fig. 1 is an illustrative example of an ANN model with 
specific AW resonator input/output design parameters. w and b 
are both adjustable scalar parameters for each neuron and 
governed by the training algorithm in use.

Efficient design and analysis of multidomain packaged 
devices and radio frequency front-end (RFFE) modules is a key 
to the development of competitive communication pruducts by 
ensuring their reliability and by accelerating the product time- 
to-market. Attempting to emulate the complexity of such 
systems by incorporating all degrees of freedom using brute- 
force simulation methods requires an extremely large 
computational overhead which hinders the ability to carry out 
accurate and efficient system-level analysis. Alternatively, 
domain decomposition methods based on cascading models 
from different domains (e.g., mechanical, acoustical, electrical, 
and/or thermal domains) have been widely adopted in the 
microelectronics industry for the analysis of multidomain 
modules. Such schemes allow concurrent system-level analysis 
and improve the product re-design cycles.

The intent of this work is to develop machine learning based 
models which can accurately and efficiently emulate the 
behavior of AW resonators. The developed models w ill then be 
utilized to construct ladder-type bandpass filters to benchmark 
the model accuracy. AW devices find several applications in 
RFFE modules especially for portable wireless systems where 
small size, light weight, and high performance are paramount.
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II. M o d e l in g  Ap p r o a c h

A. Domain Decomposition

Available standalone simulation tools are limited in terms 
of their capability to perform multi-domain analysis. For 
example, typical computational electromagnetic (CEM) tools 
are incapable of analyzing nonlinear and digital devices. On the 
other hand, multiphysics based solvers are computationally 
expensive and therefore inefficient in handling large design 
optimization problems. Understanding these challenges and 
trying to thoroughly emulate the complexity of modern RF 
modules has led to developing several modeling approaches 
that can facilitate system-level analysis and optimization. 
Among these methods, domain decomposition schemes are the 
most commonly used allowing fast-paced product development 
cycles and, as a result, shorter product time-to-market.

In the analysis of electroacoustic wave devices, the 
performance is evaluated by incorporating models from the two 
separate domains, electromagnetic and electroacoustic, which 
are then simulated concurrently via a circuit solver tool. The 
electromagnetic (EM) model is required to capture the EM 
parasitics from the package housing the acoustic components, 
while the electroacoustic model is necessary to describe the 
behavior of the piezoelectric components in the device. This 
approach offers an efficient, yet accurate and concurrent 
analysis for evaluating and optimizing complex RF systems.

Fig. 2 illustrates a co-design approach based on domain 
decomposition. Here, the linear domain (die packages, PCB 
traces, embedded passives, evaluation board, etc.) is analyzed by 
a CEM tool to extract their network parameters (e.g., S-matrix). 
An S-parameter matrix can then be imported into a circuit 
simulator (e.g., Keysight ADS) to link into it nonlinear (or 
electroacoustic) surrogate models enabling a concurrent multi­
domain analysis. It is worth pointing out that the frequency 
dependent nature of the linear domain (device package) requires 
that the network-parameters are computed at the frequency band 
of interest; thus, dispersion characteristics are well-preserved.

(a)

Lumped 
°  Ports

(b)

Fig. 2. A  domain decomposition example of an electroacoustic packaged filter 
mounted on an evaluation board: (a) a full model containing both the 
piezoelectric (nonlinear-domain) and packaging (linear-domain) materials; and 
(b) the model-problem in (a), however, with lumped ports replacing the 
piezoelectric material (i.e., to model the linear domain only).

B. Machine Learning Based Modeling

Machine learning methods are typically classified into 
supervised learning where input/output data are available for 
modeling, and unsupervised learning where only input data is 
known (e.g., pattern recognition) [7]. ANNs among others are 
the most prominent machine learning method as they are 
flexible, scalable, and exhibit exceptional generalization and

extrapolation capabilities. In addition, ANN models can 
efficiently handle complex optimization problems, especially 
when dealing with a multidimensional modeling space that 
requires covering wide parametric sweeps, emulating highly 
nonlinear device behaviors, and dealing with high-Q resonances. 
A ll these benefits broaden the scope of their application. 
According to the Universal Approximation Theorem [8], a 
three-layer MLP ANN structure can approximate any arbitrary 
nonlinear, continuous, and multi-dimensional input-output 
function to any level of desired accuracy.

A machine learning algorithm uses computational methods 
to train the model directly from input data without relying on 
empirical, analytical, or physics-based models. Assume x 
represent an m-vector, containing physical or geometrical input 
model parameters (e.g., area or static capacitance, series 
resonance frequency, etc.) of an AW resonator, and let y  
represent an n-vector containing the output model responses 
(e.g., real and imaginary parts of S11). The relationship between 
y  and x can be described as y  = fx ) , where f  represents a detailed 
physics-based model. The ANN model for such relationship can 
be represented asy  = fm(x, w, b), where w is a weight vector and 
b is a bias vector of the neurons that are iteratively adjusted 
during the network training process so as to minimize the 
training error. Among many other error functions, mean squared 
error (MSE) is the most common measure for regression. MSE 
calculates the average squared difference between the modeled 
outputs and the exact outputs. Training data critical to the 
development of the ANN models can be acquired through high 
fidelity finite element method simulations or measurements. 
Training data are usually normalized at the input layer to 
facilitate the training process. In fact, data normalization is an 
important step since the input parameters may include input 
vectors with large element values and other vectors with small 
element values that may also differ from one modeling problem 
to another by orders of magnitude. This, in turn, could affect the 
learning quality as the output values may become sensitive to 
the input values with higher magnitude. MLP ANN algorithms 
are typically trained using backpropagation methods (i.e., 
starting from the output layer and propagate backwards) to 
update its weights based on the pre-defined error function. 
Generally, as the number of samples available for training 
increases, the modeling accuracy increases.

The activation function of the neurons in the input layer is a 
relay function (i.e., no computation is performed at this layer), 
while for the output neurons it is a linear function that computes 
the weighted sum of the inputs of the output neurons. The 
activation function of the hidden layer can be one or a 
combination of several functions such as sigmoid, arc-tangent, 
or hyperbolic tangent [6]. The sigmoid function is commonly 
used and given by

o-(Y) =
1

1 + e~y
(1)

where y and a are the input and output of the hidden neuron, 
respectively. The sigmoid function is bounded, continuous, 
monotonic, and differentiable (i.e., the slope of the sigmoid 
curve can be determined at any two points). The function exists 
between 0 to 1, which is applicable for problems that deal with 
probability prediction and output data that is known to lie within
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TABLE I. Pa r a me t e r s  o f  t h e  Dev el o pe d  Sin g l e  La y e r  AW Re s o n a t o r -Le v e l  ANN Mo d el s

LTE

Frequency

Band

ANN

Model

Number Number 

of of 

Neurons Epoch

T raining 

Algorithm

Mean 

Squared 

Error (MSE)

Size of Size of 

Training Validation 

Data Data

Size of 

Testing 

Data
Area (pm2)

Series Resonance

(MHz)

Frequency

Vector (MHz)

Band 7

Series

Resonator
150 1000

Levenberg­

Marquardt
1.945e-06

50434 10807 10807
7000 -  12000 

(1000 pm2 step)

2538 -  2552 

(2 MHz step)

1500 -  3000 

(1 MHz step)

Scaled Conjugate 

Gradient
1.090e-03

Bayesian

Regularization
5.101e-07

Shunt

Resonator
150 1000

Levenberg­

Marquardt
6.459e-07

50434 10807 10807
20000 -  25000 

(1000 pm2 step)

2458 -  2472 

(2 MHz step)

Scaled Conjugate 

Gradient
2.671e-3

Bayesian

Regularization
1.332e-07

Band 41

Series

Resonator
150 1000

Bayesian

Regularization
1.452e-07 69346 14860 14860

9000 -  19000 

(2000 pm2 step)

2600 -  2700 

(10 MHz step) 1000 -  4000 

(2 MHz step)Shunt

Resonator
150 1000

Bayesian

Regularization
2.464e-07 69346 14860 14860

9000 -  19000 

(2000 pm2 step)

2450 -  2550 

(10 MHz step)

certain value bounds. The purpose of the activation function is 
to introduce nonlinear functionality to the neurons being trained.

It is worth pointing out that complex valued data must be 
split into two components, (real and imaginary) or (magnitude 
and phase), when they are used as output vectors. In addition, 
one may want to examine different equivalent network 
parameters (Z-, Y-, or S-parameters) of the data being modeled 
to determine which waveform results in fewer discontinuities to 
facilitate the machine learning process.

III. Re s u l t s  a n d  D is c u s s io n

An AW ladder filter comprises series and shunt resonators. 
Considering the ANN model for an AW resonator with 
input/output design parameter as illustrated in Fig. 1, four sets 
of ANN models have been developed with the aid of MATLAB 
[7]. Two models for the series and shunt resonators of Band 7, 
respectively. Similarly, another two models for the series and 
shunt resonators of Band 41. The input design space for the two 
filters are described in Table I. Data required for the 
development of the ANN models are based on de-embedded 
measured on-wafer resonator data.

Three different ANN training algorithms have been 
evaluated (Levenberg-Marquardt, Bayesian Regularization, and 
scaled conjugate gradient) which are suitable for function 
approximation problems. The Bayesian Regularization 
algorithm can provide excellent correlation to the data being 
modeled at a relatively slower convergence rate when compared 
to the other two algorithms. The conjugate gradient algorithm 
has the fastest convergence and requires less computational 
resources; however, it has the least model accuracy for the same 
number of epochs and a given number of neurons. A ll three 
algorithms are used to train feedforward ANN networks where 
the information propagate only in one direction. This is different 
from a recurrent ANN that incorporates feedback loops.

The number of neurons required for producing accurate 
ANN model has been determined in a trial error fashion by 
gradually increasing the number of neurons and comparing the 
MSE of the generated models. In this study, 15% of the available 
samples are used for validation and another 15% are used for 
testing the final/generated ANN model while the remaining 70% 
of the data are used for training. Both testing and validation 
datasets are used to provide unbiased evaluation of the model 
accuracy. While the testing dataset is an objective measure used 
to gauge the accuracy of the final model once it is completely 
trained, the validation dataset is utilized to frequently evaluate 
and tune the model during the training process (however, it 
doesn’t participate in the training process in any way).

After the successful development of the ANN AW resonator 
models, Band 7 and Band 41 ladder-type filters were constructed 
and compared against the exact performance as demonstrated in 
Fig. 3. The exact performance is based on de-embedded 
measured resonator data that were used to construct the filters 
response in a circuit schematic level.

It was observed that a small number of neurons (40 neurons) 
were adequate to provide accurate prediction of the filter’s out- 
of-band (ooB) rejection performance, while a larger number of 
neurons was needed to accurately mimic the in-band behavior 
(i.e., insertion loss and impedance shape).

The results, given in Table I, show high accuracy of the 
generated ANN models using the Bayesian Regularization 
training algorithm as demonstrated with the Band 7 case study. 
Consequently, the same algorithm was applied to model the 
Band 41 resonators. Although the input design parameters are 
well spaced in Band 41 data when compared to the Band 7 data, 
the generated model resulted in a relatively similar accuracy 
level.
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(b) (e)

(c) (f)

Fig. 3. Modeled (blue solid line) and exact (black circular symbols) 
performance. (a); (b); and (c) Band 7 wideband; input; and output reflection 
coefficient, respectively. (d); (e); and (f) Band 41 wideband; input; and output 
reflection coefficient, respectively.

IV. Po t e n t ia l  Ap p l ic a t io n s

other possible applications that could utilize the capabilities 
of machine learning algorithms in the field of AW filters design 
include:

A. Die Layout Optimization

One of the time-consuming steps in the design process of an 
AW filter is the preparation of the die layout. Generally, the 
resonators in a packaged filter layout need to be arranged in a 
way that avoids EM parasitic coupling among the resonators 
themselves and with the filter package. Additionally, the layout 
must be designed so that it has the least routing loss between the 
input and the output of the filter. Machine learning algorithms 
can be trained to provide the proper arrangement of resonators 
for a given package size, filter topology, and number of 
resonators.

B. BAW Resonator Pattern Recognition

Apodization is the process of modifying the lateral structures 
of a bulk acoustic wave (BAW) resonator for spurious mode 
suppression. ANN can be trained to learn the resonator patterns 
for a given BAW stack that results in the least possible spurious 
distortion. A modeling scenario may include input parameters 
such as the rectangular coordinates of the resonator’s electrodes 
(e.g., polygon vertices) over a sweep of frequency, while the 
output could be a measurement equation to identify the 
occurrence of the spurious modes (e.g., sharp slopes in response) 
outside the series and parallel resonances of the BAW resonator.

C. Automatic Model Extraction

AW resonator surrogate models can be developed by 
automating the sample selection of the ANN training data which 
are usually computationally or experimentally expensive. This 
can be accomplished by driving a FEM simulation solver or an 
on-wafer measurement setup to only select the necessary data 
points for training that ensure a user predefined model accuracy. 
A highly adaptive sampling algorithm (e.g., Lola-Voronoi [9]) 
is typically used for this purpose to balance the data selection 
process between dividing the design space into equally spaced 
points and selecting more points in highly nonlinear regions.

V. Co n c l u s io n

In this study, three different machine learning algorithms 
employing ANNs have been developed and benchmarked to 
model the behavior of AW resonators. The successfully 
developed models are utilized to construct Band 7 and Band 41 
transmit ladder-type bandpass filters which are then compared 
against the exact filter response. Among the three training 
algorithms, it was observed that the Bayesian Regularization 
method provides the least MSE and yields accurate model 
prediction. It is worth mentioning that the developed ANN 
models can be easily incorporated into a circuit solver as custom 
nonlinear equation-based components (e.g., as Keysight ADS 
symbolically-defined device, SDD).

Several potential applications that could benefit from the 
capabilities of machine learning algorithms are discussed and 
summarized in this paper. Additionally, artificial intelligence 
(AI) based algorithms are expected to have vast deployment in 
the foreseeable future wireless communication technologies as 
in the new fifth generation (5G) mobile networks.
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